Temporal correlations in the Vicsek model with vectorial noise
Damián Gulich,
Gabriel Baglietto and
Alejandro F. Rozenfeld
Physica A: Statistical Mechanics and its Applications, 2018, vol. 502, issue C, 590-604
Abstract:
We study the temporal correlations in the evolution of the order parameter ϕt for the Vicsek model with vectorial noise by estimating its Hurst exponent H with detrended fluctuation analysis (DFA). We present results on this parameter as a function of noise amplitude η introduced in simulations. We also compare with well known order–disorder phase transition for that same noise range. We find that – regardless of detrending degree – H spikes at the known coexistence noise for phase transition, and that this is due to nonstationarities introduced by the transit of the system between two well defined states with lower exponents. We statistically support this claim by successfully synthesizing equivalent cases derived from a transformed fractional Brownian motion (TfBm).
Keywords: Vicsek model; Self-propelled particles; Scaling range; Fractality; Detrended Fluctuation Analysis; Time series analysis (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118301808
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:502:y:2018:i:c:p:590-604
DOI: 10.1016/j.physa.2018.02.094
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().