EconPapers    
Economics at your fingertips  
 

Dynamic route and departure time choice model based on self-adaptive reference point and reinforcement learning

Xue-yan Li, Xue-mei Li, Lingrun Yang and Jing Li

Physica A: Statistical Mechanics and its Applications, 2018, vol. 502, issue C, 77-92

Abstract: Most of the previous studies on dynamic traffic assignment are based on traditional analytical framework, for instance, the idea of Dynamic User Equilibrium has been widely used in depicting both the route choice and the departure time choice. However, some recent studies have demonstrated that the dynamic traffic flow assignment largely depends on travelers’ rationality degree, travelers’ heterogeneity and what the traffic information the travelers have. In this paper, we develop a new self-adaptive multi agent model to depict travelers’ behavior in Dynamic Traffic Assignment. We use Cumulative Prospect Theory with heterogeneous reference points to illustrate travelers’ bounded rationality. We use reinforcement-learning model to depict travelers’ route and departure time choosing behavior under the condition of imperfect information. We design the evolution rule of travelers’ expected arrival time and the algorithm of traffic flow assignment. Compared with the traditional model, the self-adaptive multi agent model we proposed in this paper can effectively help travelers avoid the rush hour. Finally, we report and analyze the effect of travelers’ group behavior on the transportation system, and give some insights into the relation between travelers’ group behavior and the performance of transportation system.

Keywords: Dynamic traffic assignment; Self-adaptive; Cumulative prospect theory; Reference point; Reinforcement learning (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118301912
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:502:y:2018:i:c:p:77-92

DOI: 10.1016/j.physa.2018.02.104

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:502:y:2018:i:c:p:77-92