Impacts of traffic congestion on fuel rate, dissipation and particle emission in a single lane based on Nasch Model
Wei Pan,
Yu Xue,
Hong-Di He and
Wei-Zhen Lu
Physica A: Statistical Mechanics and its Applications, 2018, vol. 503, issue C, 154-162
Abstract:
This paper presents simulation results of Traffic emitted particle modeling based on NaSch Model of a single lane. Three parts are constituted to the proposed model: traffic component (NaSch Model), fuel rate and dissipation component, and particle emission component. Impacts of speed limit, injection rate and extinction rate of the lane on the fuel cost and PM emission are disused in the periodic boundary condition and open boundary condition, respectively. Results from model simulation show that the critical transition point of the traffic system could also be used as a cut-off point for the change of the fuel and emission indexes. The high-speed limit was energy conservative and environmentally friendly until congestion occurred, while the low speed limit was better for smooth flowing traffic. The overall impact from the extension rate was more significant than the injection rate on all indexes, and the closer the road section was to the exit, the more fuel was consumed and the more particles were produced. The situation got better in descending order of the distance of the section to the exit.
Keywords: Particle emission; Fuel rate; Dissipation; NaSch model; Traffic congestion (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118302851
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:503:y:2018:i:c:p:154-162
DOI: 10.1016/j.physa.2018.02.199
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().