A link clustering based memetic algorithm for overlapping community detection
Mingming Li and
Jing Liu
Physica A: Statistical Mechanics and its Applications, 2018, vol. 503, issue C, 410-423
Abstract:
Community detection has attracted plenty of attention in the field of complex networks recently, since communities often play important roles in networked systems. Overlapping communities are one of the characteristics of social networks, describing the phenomenon that a node may belong to more than one social group. Thus, it is necessary to find overlapping community structures for realistic social network analyses. In this paper, we propose a link clustering based memetic algorithm for detecting overlapping communities. Since links usually represent the unique relationships among nodes, link clustering can find link groups with the same characteristics. As a result, nodes are naturally partitioned into multiple communities. The proposed algorithm optimizes a modularity density function which is able to identify densely connected groups of links on the weighted line graph modeling the network, and then maps link communities to node communities based on a novel genotype representation. In our method, the number of communities can be automatically determined. Experimental results on general and sparse networks show that our method can successfully detect overlapping community structures and almost all the overlapping nodes.
Keywords: Community detection; Overlapping community; Memetic algorithm; Link community (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711830253X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:503:y:2018:i:c:p:410-423
DOI: 10.1016/j.physa.2018.02.133
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().