Fractional Randomness and the Brownian Bridge
Charles S. Tapiero and
Pierre Vallois
Physica A: Statistical Mechanics and its Applications, 2018, vol. 503, issue C, 835-843
Abstract:
This paper introduces a statistical approach to fractional randomness based on the Central Limit Theorem. We show under general conditions that fractional noise-randomness defined relative to a uniform distribution, implies as well a fractional Brownian Bridge randomness rather than a Fractional Brownian Motion. We analyze further their fractional properties, namely, their variance and covariance and obtain specific results for particular distributions including the fractional uniform distribution and an exponential distribution. The results we obtain have both practical and theoretical implications to the many applications of fractional calculus and in particular, when they are applied to modeling statistical problems where time scaling and randomness prime. This is the case in finance, insurance and risk models as well as in other areas of interest.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118301833
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:503:y:2018:i:c:p:835-843
DOI: 10.1016/j.physa.2018.02.097
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().