Entanglement and thermodynamics in non-equilibrium isolated quantum systems
Pasquale Calabrese
Physica A: Statistical Mechanics and its Applications, 2018, vol. 504, issue C, 31-44
Abstract:
In these lectures, I pedagogically review some recent advances in the study of the non-equilibrium dynamics of isolated quantum systems. In particular I emphasise the role played by the reduced density matrix and by the entanglement entropy in the understanding of the stationary properties after a quantum quench. The idea that the stationary thermodynamic entropy is the entanglement accumulated during the non-equilibrium dynamics is introduced and used to provide quantitative predictions for the time evolution of the entanglement itself. The harmonic chain is studied as an elementary model in which the quench dynamics can be easily and exactly worked out. This example provides a useful playground where general concepts can be simply understood and later applied to more complex and realistic systems.
Keywords: Entanglement entropy; Quantum quenches (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711731018X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:504:y:2018:i:c:p:31-44
DOI: 10.1016/j.physa.2017.10.011
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().