Community detection in networks using self-avoiding random walks
Guilherme de Guzzi Bagnato,
José Ricardo Furlan Ronqui and
Gonzalo Travieso
Physica A: Statistical Mechanics and its Applications, 2018, vol. 505, issue C, 1046-1055
Abstract:
Different kinds of random walks have proven to be useful in the study of structural properties of complex networks. Among them, the restricted dynamics of self-avoiding random walks (SAW), which visit only at most once each vertex in the same walk, has been successfully used in network exploration. The detection of communities of strongly connected vertices in networks remains an open problem, despite its importance, due to the high computational complexity of the associated optimization problem and the lack of a unique formal definition of communities. In this work, we propose a SAW-based method to extract the community distribution of a network and show that it achieves high modularity scores, specially for real-world networks. We combine SAW with principal component analysis to define the dissimilarity measure to be used for agglomerative hierarchical clustering. To evaluate the performance of this method we compare it with four popular methods for community detection: Girvan–Newman, Fastgreedy, Walktrap and Infomap using two types of synthetic networks and six well-known real-world cases.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118304242
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:505:y:2018:i:c:p:1046-1055
DOI: 10.1016/j.physa.2018.04.006
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().