EconPapers    
Economics at your fingertips  
 

Quantum work fluctuations versus macrorealism in terms of non-extensive entropies

Alexey E. Rastegin

Physica A: Statistical Mechanics and its Applications, 2018, vol. 505, issue C, 233-242

Abstract: Fluctuations of the work performed on a driven quantum system can be characterized by the so-called fluctuation theorems. The Jarzynski relation and the Crooks theorem are famous examples of exact equalities characterizing non-equilibrium dynamics. Such statistical theorems are typically formulated in a similar manner in both classical and quantum physics. Leggett–Garg inequalities are inspired by the two assumptions referred to as the macroscopic realism and the non-invasive measurability. Together, these assumptions are known as the macrorealism in the broad sense. Quantum mechanics is provably incompatible with restrictions of the Leggett–Garg type. It turned out that Leggett–Garg inequalities can be used to distinguish quantum and classical work fluctuations. We develop this issue with the use of entropic functions of the Tsallis type. Varying the entropic parameter, we are often able to reach more robust detection of violations of the corresponding Leggett–Garg inequalities. In reality, all measurement devices suffer from losses. Within the entropic formulation, detection inefficiencies can naturally be incorporated into the consideration. This question also shows advantages that are provided due to the use of generalized entropies.

Keywords: Macroscopic realism; Leggett–Garg inequalities; Quantum work; Tsallis entropy (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118303509
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:505:y:2018:i:c:p:233-242

DOI: 10.1016/j.physa.2018.03.030

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:505:y:2018:i:c:p:233-242