EconPapers    
Economics at your fingertips  
 

Temperature is not an observable in superstatistics

Sergio Davis and Gonzalo Gutiérrez

Physica A: Statistical Mechanics and its Applications, 2018, vol. 505, issue C, 864-870

Abstract: Superstatistics (Beck and Cohen, 2003) is a formalism that attempts to explain the presence of distributions other than the Boltzmann–Gibbs distributions in Nature, typically power-law behavior, for systems out of equilibrium such as fluids under turbulence, plasmas and gravitational systems. Superstatistics postulates that those systems are found in a superposition of canonical ensembles at different temperatures, and sometimes the physical interpretation is one of local thermal equilibrium in the sense of an inhomogeneous temperature distribution in different regions of space or instants of time.

Keywords: superstatistics (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118304254
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:505:y:2018:i:c:p:864-870

DOI: 10.1016/j.physa.2018.04.007

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:505:y:2018:i:c:p:864-870