Solutions of fractional logistic equations by Euler’s numbers
D’Ovidio, Mirko and
Paola Loreti
Physica A: Statistical Mechanics and its Applications, 2018, vol. 506, issue C, 1081-1092
Abstract:
In this paper, we solve in the convergence set, the fractional logistic equation making use of Euler’s numbers. To our knowledge, the answer is still an open question. The key point is that the coefficients can be connected with Euler’s numbers, and then they can be explicitly given. The constrained of our approach is that the formula is not valid outside the convergence set. The idea of the proof consists to explore some analogies with logistic function and Euler’s numbers, and then to generalize them in the fractional case.
Keywords: Euler’s numbers; Biological application; Fractional logistic equation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118305673
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:506:y:2018:i:c:p:1081-1092
DOI: 10.1016/j.physa.2018.05.030
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().