Traffic state prediction using ISOMAP manifold learning
Qingchao Liu,
Yingfeng Cai,
Haobin Jiang,
Jian Lu and
Long Chen
Physica A: Statistical Mechanics and its Applications, 2018, vol. 506, issue C, 532-541
Abstract:
Traffic state prediction is an essential problem with considerable implications in the intelligent transportation system. This paper puts forward an approach for predicting urban road traffic states based on ISOMAP manifold learning. By establishing a distance measurement that represents the overall geometric structure based on the Isometric Feature Mapping (ISOMAP) algorithm, this approach utilizes all consistent information regarding the traffic flow, thus improving the prediction accuracy of the road traffic state. The experimental results indicate that, compared with a traditional prediction approach, the equality coefficient has a bigger increase in value and a much lower prediction error. The traffic state prediction approach based on ISOMAP manifold learning achieves a higher level of accuracy.
Keywords: Traffic state; Prediction; Traffic parameter; Cluster (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118304680
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:506:y:2018:i:c:p:532-541
DOI: 10.1016/j.physa.2018.04.031
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().