Long-time behaviors of a stochastic cooperative Lotka–Volterra system with distributed delay
Wenjie Zuo,
Daqing Jiang,
Xinguo Sun,
Tasawar Hayat and
Ahmed Alsaedi
Physica A: Statistical Mechanics and its Applications, 2018, vol. 506, issue C, 542-559
Abstract:
This article focuses on a stochastic cooperative Lotka–Volterra system with distributed delay. We first transfer the stochastic system with weak kernel into a degenerate stochastic system made up of four equations. For the deterministic system, global stability of the positive equilibrium is investigated. For the stochastic system with distributed delay, sharp sufficient conditions for the persistence of two species are established. What is more, we obtain the existence and uniqueness of the stationary distribution by constructing suitable Lyapunov function and proving the global attraction of the positive solution. The results show that, the weaker white noises can ensure the existence of a unique stationary distribution and the stronger white noises can result in the extinction of one or two species, though the positive equilibrium is globally stable without white noises.
Keywords: Stochastic cooperative Lotka–Volterra system; Distributed delay; Persistence; Stationary distribution; Global attraction (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118303960
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:506:y:2018:i:c:p:542-559
DOI: 10.1016/j.physa.2018.03.071
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().