A novel control strategy for balancing traffic flow in urban traffic network based on iterative learning control
Fei Yan,
Gaowei Yan,
Mifeng Ren,
Jianyan Tian and
Zhongke Shi
Physica A: Statistical Mechanics and its Applications, 2018, vol. 508, issue C, 519-531
Abstract:
Realistic modeling traffic flow dynamics in urban traffic network remains a big challenge at present due to the complex nonlinear characteristics of traffic flow. In this paper, a novel and model-free iterative learning control (ILC) strategy for balancing traffic flow in urban traffic network is proposed. To tackle the randomly varying trial lengths in the iteration domain of traffic system, an iterative-average operator is introduced in the proposed ILC law for tracking tasks with non-uniform trial lengths, which thus mitigates the requirement on classic ILC that all trial lengths must be identical. The learning convergence condition of the ILC strategy in iteration-average and expectation is derived through rigorous analysis. The performance and the effectiveness of the ILC strategy are analyzed by simulations on a test road network. The results show that the proposed ILC strategy can homogeneously balance the accumulation in the network and improve the network mobility.
Keywords: Urban traffic network; Iterative learning control (ILC); Traffic flow; Average operator; Macroscopic fundamental diagram (MFD) (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118306861
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:508:y:2018:i:c:p:519-531
DOI: 10.1016/j.physa.2018.05.134
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().