Optimal threshold for Pareto tail modelling in the presence of outliers
Muhammad Aslam Mohd Safari,
Nurulkamal Masseran and
Kamarulzaman Ibrahim
Physica A: Statistical Mechanics and its Applications, 2018, vol. 509, issue C, 169-180
Abstract:
The Pareto distribution is widely applied in many areas of studies such as economics and sciences. An important issues related to Pareto tail modelling is to determine the optimal threshold of the Pareto distribution. One of the methods used for determining the optimal threshold of Pareto distribution is by choosing the threshold that minimizes the goodness-of-fit statistics found based on empirical distribution function (EDF). This study involves determination of the shape parameter of the Pareto distribution using the maximum likelihood method and robust method based on the probability integral transform statistics. In addition, given the particular estimates of the shape parameter, comparison of the performance of several EDF statistics, namely, Kolmogorov–Smirnov, Kuiper, Anderson–Darling, Cramer–von Misses and Watson statistics in determining the optimal threshold in the presence of outliers is studied based on Monte Carlo simulation. Since the EDF statistics are found smallest for Kolmogorov–Smirnov or Kuiper statistics, these two EDF statistics outperformed other EDF statistics considered. The findings are illustrated using a sample of household income data of the Malaysian population. The optimal threshold found can be used to classify the high income earners in Malaysia since Pareto distribution is one of the most frequently used model to describe the upper tail of income distribution.
Keywords: Pareto distribution; Optimal threshold; EDF statistics; Maximum likelihood; Probability integral transform statistics (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118307313
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:509:y:2018:i:c:p:169-180
DOI: 10.1016/j.physa.2018.06.007
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().