EconPapers    
Economics at your fingertips  
 

Estimation of crowd density applying wavelet transform and machine learning

Koki Nagao, Daichi Yanagisawa and Katsuhiro Nishinari

Physica A: Statistical Mechanics and its Applications, 2018, vol. 510, issue C, 145-163

Abstract: We conducted a simple experiment in which one pedestrian passed through a crowded area and measured the body-rotational angular velocity with commercial tablets. Then, we developed a new method for predicting crowd density by applying the continuous wavelet transform and machine learning to the data obtained in the experiment. We found that the accuracy of prediction using angular velocity data was as high as that using raw velocity data. Therefore, we concluded that angular velocity has relationship with crowd density and we could estimate crowd density by angular velocity. Our research will contribute to management of safety and comfort of pedestrians by developing an easy way to measure crowd density.

Keywords: Density estimation; Tablet sensor; Wavelet transform; Machine learning; Real experiment (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118308033
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:510:y:2018:i:c:p:145-163

DOI: 10.1016/j.physa.2018.06.078

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:510:y:2018:i:c:p:145-163