A convection–diffusion model for gang territoriality
Abdulaziz Alsenafi and
Alethea B.T. Barbaro
Physica A: Statistical Mechanics and its Applications, 2018, vol. 510, issue C, 765-786
Abstract:
We present an agent-based model to simulate gang territorial development motivated by graffiti marking on a two-dimensional discrete lattice. For simplicity, we assume that there are two rival gangs present, and they compete for territory. In this model, agents represent gang members and move according to a biased random walk, adding graffiti with some probability as they move and preferentially avoiding the other gang’s graffiti. All agent interactions are indirect, with the interactions occurring through the graffiti field. We show numerically that as parameters vary, a phase transition occurs between a well-mixed state and a well-segregated state. The numerical results show that system mass, decay rate and graffiti rate influence the critical parameter. From the discrete model, we derive a continuum system of convection–diffusion equations for territorial development. Using the continuum equations, we perform a linear stability analysis to determine the stability of the equilibrium solutions and we find that we can determine the precise location of the phase transition in parameter space as a function of the system mass and the graffiti creation and decay rates.
Keywords: Phase transition; Segregation model; Crime modeling; Territorial formation; Agent-based model; Cross-diffusion (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118308604
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:510:y:2018:i:c:p:765-786
DOI: 10.1016/j.physa.2018.07.004
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().