Identifying the influential nodes via eigen-centrality from the differences and similarities of structure
Lin-Feng Zhong,
Ming-Sheng Shang,
Xiao-Long Chen and
Shi-Ming Cai
Physica A: Statistical Mechanics and its Applications, 2018, vol. 510, issue C, 77-82
Abstract:
One of the most important problems in complex network is the identification of the influential nodes. For this purpose, the use of differences and similarities of structure to enrich the centrality method in complex networks is proposed. The centrality method called ECDS centrality used is the eigen-centrality which is based on the Jaccard similarities between the two random nodes. This can be described by an eigenvalues problem. Here, we use a tunable parameter α to adjust the influence of the differences and similarities. Comparing with the results of the Susceptible Infected Recovered (SIR) model for four real networks, the ECDS centrality could identify influential nodes more accurately than the tradition centralities such as the k-shell, degree and closeness centralities. Especially, in the Erdös network, the Kendall’s tau could be reached to 0.93 when the spreading rate is 0.12. In the US airline network, the Kendall’s tau could be reached to 0.95 when the spreading rate is 0.06.
Keywords: Complex network; Influential node; Eigen-centrality; SIR; Kendall (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118308392
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:510:y:2018:i:c:p:77-82
DOI: 10.1016/j.physa.2018.06.115
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().