The Ising universality class in dimension three: Corrections to scaling
P.H. Lundow and
I.A. Campbell
Physica A: Statistical Mechanics and its Applications, 2018, vol. 511, issue C, 40-53
Abstract:
Simulation data are analyzed for four 3D spin-1∕2 Ising models: on the FCC lattice, the BCC lattice, the SC lattice and the Diamond lattice. The observables studied are the susceptibility, the reduced second moment correlation length, and the normalized Binder cumulant. From measurements covering the entire paramagnetic temperature regime the corrections to scaling are estimated. We conclude that a correction term having an exponent which is consistent within the statistics with the bootstrap value of the universal subleading thermal confluent correction exponent, θ2∼2.454(3), is almost always present with a significant amplitude. In all four models, for the normalized Binder cumulant the leading confluent correction term has zero amplitude. This implies that the universal ratio of leading confluent correction amplitudes aχ4∕aχ=2 in the 3D Ising universality class.
Keywords: 3D Ising model; Scaling; Corrections to scaling (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118308124
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:511:y:2018:i:c:p:40-53
DOI: 10.1016/j.physa.2018.06.087
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().