Identifying influential nodes in complex networks based on the inverse-square law
Liguo Fei,
Qi Zhang and
Yong Deng
Physica A: Statistical Mechanics and its Applications, 2018, vol. 512, issue C, 1044-1059
Abstract:
How to identify influential nodes in complex networks continues to be an open issue. A number of centrality measures have been presented to address this problem. However, these studies focus only on a centrality measure and each centrality measure has its own shortcomings and limitations. To solve problems above, in this paper, a novel method is proposed to identify influential nodes based on the inverse-square law. The mutual attraction between different nodes has been defined in complex network, which is inversely proportional to the square of the distance between two nodes. Then, the definition of intensity of node in a complex network is proposed and described as the sum of attraction between a pair of nodes in the network. The ranking method is presented based on the intensity of node, which can be considered as the influence of the node. In order to illustrate the effectiveness of the proposed method, several experiments are conducted to identify vital nodes simulations on four real networks, and the superiority of the proposed method can be demonstrated by the results of comparison experiments.
Keywords: Complex networks; Influential nodes; Inverse-square law; Intensity; SI model (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118310781
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:512:y:2018:i:c:p:1044-1059
DOI: 10.1016/j.physa.2018.08.135
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().