Universal Poisson-process limits for general random walks
Iddo Eliazar
Physica A: Statistical Mechanics and its Applications, 2018, vol. 512, issue C, 1160-1174
Abstract:
This paper considers ensembles of general, independent and identically distributed, random walks. Taking the ensemble-size to grow infinitely large, and also taking the running-time of the random walks to grow infinitely large, universal Poisson-process limits are obtained. Specifically, it is established that the positions of general linear random walks converge universally to Poisson processes, over the real line, with uniform and exponential intensities. And, it is established that the positions of general geometric random walks converge universally to Poisson processes, over the positive half-line, with harmonic and power intensities. Corollaries to these universal convergence results yield the extreme-value statistics of Gumbel, Weibull, and Frechet.
Keywords: Random walks; Universal convergence; Poisson processes; Power statistics; Selfsimilar motions; Levy noises (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711830966X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:512:y:2018:i:c:p:1160-1174
DOI: 10.1016/j.physa.2018.08.038
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().