EconPapers    
Economics at your fingertips  
 

Inter-layer similarity-based eigenvector centrality measures for temporal networks

Ran-Ran Yin, Qiang Guo, Jian-Nan Yang and Jian-Guo Liu

Physica A: Statistical Mechanics and its Applications, 2018, vol. 512, issue C, 165-173

Abstract: Identifying the influential nodes in temporal networks has attracted lots of attention recently. In this paper, we present an Improved Eigenvector-based Centrality Measures (IECM) for temporal networks by regarding the coupling strength between proximity layers as the inter-layer similarity. Compared with the results of the nodes’ influences got by temporal global efficiency for two real networks, the IECM method could identify influential nodes more accurately than the traditional ECM method. Regarding to the fact that different kinds of measurements have different performances, we introduce the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method to measure the global performance. Specially, when the inter-layer coupling strength ω set as 1 in the ECM method, the accuracy could be averagely enhanced 18.75% and 29.65% at each time layer for Workspace and Enrons datasets respectively, which indicates that measuring the inter-layer coupling strength plays an important role for identifying the influential nodes.

Keywords: Inter-layer similarity; Temporal networks; Eigenvector centrality; Temporal global efficiency (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118309634
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:512:y:2018:i:c:p:165-173

DOI: 10.1016/j.physa.2018.08.018

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:165-173