Asymptotic behavior of a stochastic delayed chemostat model with nonmonotone uptake function
Shulin Sun and
Xiaofeng Zhang
Physica A: Statistical Mechanics and its Applications, 2018, vol. 512, issue C, 38-56
Abstract:
In this paper, a stochastic delay differential equations chemostat model with nonmonotone uptake function is considered, and the nutrient conversion process involves time delay. First, we verify that there is a unique global positive solution of the stochastic system. Second, we find that the solutions of stochastic system will oscillate around the equilibria of the corresponding deterministic model, moreover, results show that time delay has critical effects on the extinction and persistence of the microorganism, that is to say, under small noise, when the time delay is small, microorganism is persistent; when the time delay is large, microorganism will be extinct. In addition, we can find by the computer simulation that large noise may lead to microorganism become extinct, although microorganism is persistent in the deterministic systems when the time delay is small. Finally, computer simulations are carried out to illustrate the obtained results and the existence of bistability is observed.
Keywords: Stochastic chemostat model; Nonmonotone uptake function; Delay; Itô formula; Lyapunov functional; Asymptotic behavior (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118309506
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:512:y:2018:i:c:p:38-56
DOI: 10.1016/j.physa.2018.08.010
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().