Introducing stochastic recurrence interval to classification algorithms for identifying asperity patterns
K. Arvanitakis,
M. Avlonitis and
E. Papadimitriou
Physica A: Statistical Mechanics and its Applications, 2018, vol. 512, issue C, 566-577
Abstract:
The introduction of stochastic earthquake recurrence times in feature vector is attempted for the identification of asperities in the area of Hokkaido, Japan, using machine learning algorithms. Seismicity attributes, feature selection algorithms, and class balancing techniques were used. The stochastic attributes of earthquake density in space, b-value, and the earthquake recurrence intervals were set as asperity identifiers. The study area was divided into 422 subareas, and in each one of them the aforementioned attributes were estimated for each subarea. For increasing the method efficiency a feature selection algorithm was utilized to indicate which of the selected attributes have the potential to contribute to the identification of asperities. A feature vector is presented, combining the attributes mentioned above, and well-known machine learning algorithms were used to identify the asperities locations. The performance of the method was tested with the 10-fold cross-validation technique and was found sufficient in means of F1 score.
Keywords: Machine learning; Earthquake density; b-value; Recurrence interval; Asperities (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118310422
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:512:y:2018:i:c:p:566-577
DOI: 10.1016/j.physa.2018.08.142
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().