A scalar measure tracing tree species composition in space or time
Bogdan M. Strimbu,
Mihaela Paun,
Cristian Montes and
Sorin C. Popescu
Physica A: Statistical Mechanics and its Applications, 2018, vol. 512, issue C, 682-692
Abstract:
The tree species composition of a forest ecosystem is commonly represented with weights that measure the importance of one species with respect to the other species. Inclusion of weight in practical applications is difficult because of the inherent multidimensional perspective on composition. Scalar indices overcome the multidimensional challenges, and, consequently, are commonly present in complex ecosystem modeling. However, scalar indices face two major issues, namely non-uniqueness and non-measurability, which limit their ability to be generalized. The objective of this study is to identify the conditions for developing a univariate true measure of composition from weights. We argue that six conditions define a scalar measure of species mixture: (1) usefulness, (2) all species have equal importance, (3) all individuals have the same importance, (4) the measurements expressing importance of an individual are consistent and appropriate, (5) the function measuring composition is invertible, and (6) the function is a true-measure. We support our argument by formally proving all the conditions. To illustrate the applicability of the scalar measure we develop a rectilinear-based measure, and apply it in yield modeling and assessment of ecosystem dynamics.
Keywords: Mixed species; Weights; Uniqueness; True-measure; Rectilinear distance (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118309002
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:512:y:2018:i:c:p:682-692
DOI: 10.1016/j.physa.2018.07.036
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().