Navigating temporal networks
Sang Hoon Lee and
Petter Holme
Physica A: Statistical Mechanics and its Applications, 2019, vol. 513, issue C, 288-296
Abstract:
Navigation on graphs is the problem how an agent walking on the graph can get from a source to a target with limited information about the graph. The information and the way to exploit it can vary. In this paper, we study navigation on temporal networks—networks where we have explicit information about the time of the interaction, not only who interacts with whom. We contrast a type of greedy navigation – where agents follow paths that would have worked well in the past – with two strategies that do not exploit the additional information. We test these on empirical temporal network data sets. The greedy navigation finds the targets faster and more reliably than the reference strategies, meaning that there are correlations in the real temporal networks that can be exploited. We find that both topological and temporal structures affect the navigation.
Keywords: Temporal networks; Random walk; Network navigation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118311518
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:513:y:2019:i:c:p:288-296
DOI: 10.1016/j.physa.2018.09.036
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().