An optimized feature reduction based currency forecasting model exploring the online sequential extreme learning machine and krill herd strategies
Smruti Rekha Das,
Kuhoo,,
Debahuti Mishra and
Minakhi Rout
Physica A: Statistical Mechanics and its Applications, 2019, vol. 513, issue C, 339-370
Abstract:
For the prediction of exchange rate, this paper proposes a hybrid learning frame work model which is a joint estimation of On-Line Sequential Extreme Learning Machine (OS-ELM) along with optimized feature reduction using Krill Herd (KH). The proposed learning scheme is compared with Extreme Learning Machine (ELM) and Recurrent Back Propagation Neural Network (RBPNN), considering three factors such as; without feature reduction, with statistical based feature reduction using Principal Component Analysis (PCA) and with optimized feature reduction techniques such as KH, Bacteria Foraging Optimization (BFO) and Particle Swarm Optimization (PSO). The models are applied over USD/INR, USD/EURO, YEN/INR and SGD/INR, constructed using technical indicators and statistical measures considering 3, 5, 7, 12 and 15 as window sizes. The results of comparisons of different performance measures in testing phase and MSE in training process demonstrate that the proposed OSELM-KH exchange rate prediction model is potentiality superior compared to others.
Keywords: On-line sequential extreme learning machine; Recurrent back propagation neural network; Krill Herd; Bacteria foraging optimization; Particle swarm optimization; Principal component analysis (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118311476
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:513:y:2019:i:c:p:339-370
DOI: 10.1016/j.physa.2018.09.021
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().