EconPapers    
Economics at your fingertips  
 

Fuzzy weighted recurrence networks of time series

Tuan D. Pham

Physica A: Statistical Mechanics and its Applications, 2019, vol. 513, issue C, 409-417

Abstract: The concept of networks in the context of graph theory delineates a wide variety of real-life complex systems. The theory of networks finds its applications very useful in many scientific and intellectual domains. Weighted networks can characterize complex statistical graph properties, particularly where node connections are heterogeneous. A framework of fuzzy weighted recurrence networks of time series is presented in this letter. Popular graph measures including the average clustering coefficient and characteristic path length of fuzzy weighted recurrence networks are shown to be more robust than those of unweighted recurrence networks derived from binary recurrence plots.

Keywords: Time series; Nonlinear dynamics; Fuzzy recurrence plots; Fuzzy weighted recurrence networks (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118311634
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:513:y:2019:i:c:p:409-417

DOI: 10.1016/j.physa.2018.09.035

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:513:y:2019:i:c:p:409-417