EconPapers    
Economics at your fingertips  
 

Persistence and extinction for an age-structured stochastic SVIR epidemic model with generalized nonlinear incidence rate

Ruoxin Lu and Fengying Wei

Physica A: Statistical Mechanics and its Applications, 2019, vol. 513, issue C, 572-587

Abstract: We formulate an epidemic model with age of vaccination and generalized nonlinear incidence rate, where the total population consists of the susceptible, the vaccinated, the infected and the removed. We then reach a stochastic SVIR model when the fluctuation is introduced into the transmission rate. By using Itô’s formula and Lyapunov methods, we first show that the stochastic epidemic model admits a unique global positive solution with the positive initial value. We then obtain the sufficient conditions of the stochastic epidemic model. Moreover, the threshold tells the disease spreads or not is derived. If the intensity of the white noise is small enough and R˜0<1, then the disease eventually becomes extinct with negative exponential rate. If R˜0>1, then the disease is weakly permanent. The persistence in the mean of the infected is also obtained when the indicator Rˆ0>1, which means the disease will prevail in a long run. As a consequence, several illustrative examples are separately carried out with numerical simulations to support the main results of this paper.

Keywords: Stochastic SVIR epidemic model; Generalized nonlinear incidence rate; Age-structure; Extinction; Persistence in the mean; Threshold (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118311415
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:513:y:2019:i:c:p:572-587

DOI: 10.1016/j.physa.2018.09.016

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:513:y:2019:i:c:p:572-587