Optimization of synchronizability in complex spatial networks
Nameer Al Khafaf and
Mahdi Jalili
Physica A: Statistical Mechanics and its Applications, 2019, vol. 514, issue C, 46-55
Abstract:
Many real-world phenomena can be modelled as spatial networks where nodes have distinct geographical location. Examples include power grids, transportation networks and the Internet. This paper focuses on optimizing the synchronizability of spatial networks. We consider the eigenratio of the Laplacian Matrix of the connection graph as a metric measuring the synchronizability of the network and develop an efficient rewiring mechanism to optimize the topology of the network for synchronizability, i.e., minimizing the eigenratio. The Euclidean distance between two connected nodes is considered as their connection weights, and the sum of all connection weights is defined as the network cost. The proposed optimization algorithm constructs spatial networks with a certain number of nodes and a predefined network cost. We also study the topological properties of the optimized networks. This algorithm can be used to construct spatial networks with optimal synchronization properties.
Keywords: Optimization; Synchronization; Spatial networks; Power grids (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711831135X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:514:y:2019:i:c:p:46-55
DOI: 10.1016/j.physa.2018.09.030
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().