Bitcoin and investor sentiment: Statistical characteristics and predictability
Cheoljun Eom,
Taisei Kaizoji (),
Sang Hoon Kang and
Lukas Pichl
Physica A: Statistical Mechanics and its Applications, 2019, vol. 514, issue C, 511-521
Abstract:
This study empirically investigates the statistical characteristics and predictability of Bitcoin return and volatility. The distribution of Bitcoin returns and volatility display a fat right tail and high central parts. Bitcoin does not show the dynamic property of volatility persistence, contrary to stylized facts in financial time series. Also, the autoregressive model using past volatility does not well work in predicting changes in Bitcoin volatility for future periods. Investor sentiment regarding Bitcoin has a significant information value for explaining changes in Bitcoin volatility for future periods. These results suggest that Bitcoin appears to be an investment asset with high volatility and dependence on investor sentiment rather than a monetary asset.
Keywords: Virtual currency; Bitcoin; Investor sentiment; Statistical properties; Predictability (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (46)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118311956
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:514:y:2019:i:c:p:511-521
DOI: 10.1016/j.physa.2018.09.063
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().