Open quantum system in external magnetic field within non-Markovian quantum Langevin approach
I.B. Abdurakhmanov,
Z. Kanokov,
G.G. Adamian and
N.V. Antonenko
Physica A: Statistical Mechanics and its Applications, 2019, vol. 514, issue C, 957-973
Abstract:
The non-Markovian dynamics of a charged particle linearly coupled to a neutral bosonic heat bath is investigated in an external uniform magnetic field. The analytical expressions for the time-dependent and asymptotic friction and diffusion coefficients, cyclotron frequencies, variances of the coordinate and momentum, and orbital magnetic moments are derived. The role of magnetic field in the dissipation and diffusion processes is illustrated by several examples in the low- and high-temperature regimes. The localization phenomenon for a charged particle is observed. The orbital diamagnetism of quantum system in a dissipative environment is studied. The quantization conditions are found for the angular momentum.
Keywords: Open quantum systems; Friction and diffusion coefficients; Non-Markovian dynamics; Fluctuations; Magnetic field; Cyclotron frequency; Friction coefficients; Langevin formalism (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118312032
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:514:y:2019:i:c:p:957-973
DOI: 10.1016/j.physa.2018.09.071
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().