EconPapers    
Economics at your fingertips  
 

An extended cost potential field cellular automaton model for pedestrian evacuation considering the restriction of visual field

Xingli Li, Fang Guo, Hua Kuang, Zhongfei Geng and Yanhong Fan

Physica A: Statistical Mechanics and its Applications, 2019, vol. 515, issue C, 47-56

Abstract: Pedestrian dynamics with affected visual field under emergency situation is a difficult point in the simulation of pedestrian flow. In this paper, an extended cost potential field cellular automaton model is proposed to investigate the motion of pedestrians through obscure room lack of visibility (due to smoke, darkness, etc.). A novel visibility function is introduced to describe visual effect caused by poor vision, which will lead to the increasing cost of discomfort. The numerical simulations are performed to explore the effects of factors, such as psychology tension, visual radius and pedestrian density on pedestrian evacuation. It was found that evacuation time relies on visual radius and initial density. The evacuation time under affected visual field increases with the decrease of visual radius. At low density, a moderate tension degree can improve the evacuation efficiency. These findings will be helpful in pedestrian control and management under an emergency.

Keywords: Pedestrian evacuation; Visibility function; Cost potential field; Psychological tension; Cellular automaton model (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711831286X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:515:y:2019:i:c:p:47-56

DOI: 10.1016/j.physa.2018.09.145

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:515:y:2019:i:c:p:47-56