EconPapers    
Economics at your fingertips  
 

Long range dependence in the Bitcoin market: A study based on high-frequency data

Faisal Nazir Zargar and Dilip Kumar

Physica A: Statistical Mechanics and its Applications, 2019, vol. 515, issue C, 625-640

Abstract: Using the high-frequency data of Bitcoin, this paper investigates the long memory characteristics of the unconditional and conditional volatilities of Bitcoin at different time scales using the local Whittle (LW) estimator, the exact local Whittle (ELW) estimator and the ARMA–FIAPARCHmodel. The results show that the long memory parameter is significant and quite stable for both unconditional and conditional volatility measures across different time scales. This paper also examines the long memory characteristics of the unconditional and conditional “realized” volatilities of Bitcoin at different time scales using the local Whittle (LW) estimator, exact local Whittle (ELW) estimator and the ARFIMA model. Long memory is found to be significant and stable also in case of unconditional and conditional “realized” volatilities. The study also undertakes quarterly non-overlapping rolling window analysis to develop deeper insights into the evolution of long memory parameter, d, over the period. The results indicate high persistence in the Bitcoin market. This study has useful implications for different investors and market participants having varying exposures in the Bitcoin market depending on their trading horizons. The findings can help them in forecasting the expected volatility in the Bitcoin market and thereby in developing and implementing trading strategies.

Keywords: Bitcoin market; Long memory; High-frequency data; FIAPARCH; ARFIMA; Local Whittle; Exact local Whittle (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118313190
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:515:y:2019:i:c:p:625-640

DOI: 10.1016/j.physa.2018.09.188

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:515:y:2019:i:c:p:625-640