Partial component synchronization on chaotic networks
Fengbing Li,
Zhongjun Ma and
Qichang Duan
Physica A: Statistical Mechanics and its Applications, 2019, vol. 515, issue C, 707-714
Abstract:
As for the dynamical networks which consist of some high-dimensional nonlinear systems, the problems that researchers are concerned with are usually the asymptotic convergence on some components (rather than all components) of node’s state variables under certain condition. This means that partial component synchronization is more meaningful than identical synchronization in some cases. In this paper, the definition of partial component synchronization is given, and then the problem of partial component synchronization on a class of chaotic dynamical networks is investigated. By using matrix theory, stability theory and the hypothesis that several components in the solution vector of a single uncoupled node are ultimately dissipative, some sufficient conditions on partial component synchronization in the chaotic dynamical networks are derived. Finally, numerical simulations are shown to demonstrate the correctness of the theoretical results.
Keywords: Synchronization; Chaos; Complex network; Partial variable stability (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118313463
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:515:y:2019:i:c:p:707-714
DOI: 10.1016/j.physa.2018.10.008
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().