EconPapers    
Economics at your fingertips  
 

The evaluation on a new non-Newtonian hybrid mixture composed of TiO2/ZnO/EG to present a statistical approach of power law for its rheological and thermal properties

Peyman Mirzakhani Nafchi, Arash Karimipour and Masoud Afrand

Physica A: Statistical Mechanics and its Applications, 2019, vol. 516, issue C, 1-18

Abstract: In this study, the rheological behavior of TiO2/ZnO/EG nanofluid at temperature range of 25 °C to 50 °C has been experimentally investigated. The steady and homogeneous suspensions, in volume fractions of 0.1% to 1.5%, have been prepared with volume composition of 50% ZnO nanoparticles and 50% TiO2nanoparticles in a specified amount of EG. The viscosities of sample nanofluid have been measured in different shear rates of 6.12 S−1 to 61.2 S−1. The results of viscosity measurement showed that, TiO2/ZnO/EG nanofluid has Newtonian behavior in volume fractions of 0.1%, 0.3% and 0.5% and in all of the considered temperatures and by increasing volume fraction of nanoparticles, the viscosity of nanofluid enhances and also, by increasing the temperature, nanofluid viscosity reduces. While, the sample nanofluid in volume fractions of 1% and 1.5% have non-Newtonian behavior similar with power law model with power coefficient less than 1. For nanofluid samples in 1% and 1.5% volume fractions in all considered temperatures, the power law model coefficients have been calculated by curve-fitting with high accuracy The results indicated that, in general, by increasing volume fraction, the apparent viscosity enhances and by increasing the temperature, the apparent viscosity reduces.

Keywords: Hybrid nanofluid; Experimental measurement; Non-Newtonian behavior; TiO2 & ZnO (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118313530
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:516:y:2019:i:c:p:1-18

DOI: 10.1016/j.physa.2018.10.015

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:516:y:2019:i:c:p:1-18