Improved EEMD-based crude oil price forecasting using LSTM networks
Yu-Xi Wu,
Qing-Biao Wu and
Jia-Qi Zhu
Physica A: Statistical Mechanics and its Applications, 2019, vol. 516, issue C, 114-124
Abstract:
Considering the actual demand of crude oil price forecasting, a novel model based on ensemble empirical mode decomposition (EEMD) and long short-term memory (LSTM) is proposed. In practical work, the model trained by historical data will be used in later data. Then the forecasting models based on EEMD need re-execute EEMD to update decomposition results of price series after getting new data. In this process, the decomposition results of same period will not stay entirely identical, and even the number of decomposition results could change Unfortunately, in this case the traditional decomposition-ensemble models trained by historical data break down. To overcome this disadvantage, a method to select same number of proper inputs in different situations of decomposition results is developed. And for extracting feature from selected components more adequately, LSTM is introduced as forecasting method to predict price movement directly. For illustration and verification purposes, the proposed model is used to predict the crude oil spot price of West Texas Intermediate (WTI). Empirical results demonstrate that the proposed model still work well when the number of decomposition results varies, thus is promising for forecasting crude oil price.
Keywords: Crude oil price forecasting; Ensemble empirical mode decomposition; Recurrent neural networks; Long short term memory (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (46)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118312536
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:516:y:2019:i:c:p:114-124
DOI: 10.1016/j.physa.2018.09.120
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().