Damping and clustering into crowded environment of catalytic chemical oscillators
Carlos Echeverria,
José L. Herrera,
Orlando Alvarez-Llamoza,
Miguel Morales and
Kay Tucci
Physica A: Statistical Mechanics and its Applications, 2019, vol. 517, issue C, 297-306
Abstract:
A system formed by a crowded environment of catalytic obstacles and complex oscillatory chemical reactions is studied. The obstacles are static spheres of equal radius, which are placed in a random way. The chemical reactions are carried out in a fluid following a multiparticle collision scheme where the mass, energy and local momentum are conserved. Firstly, it is explored how the presence of catalytic obstacles changes the oscillatory dynamics from a limit cycle to a fixed point reached after a damping. The damping is characterized by the decay constant, which grows linearly with volume fraction for low values of the mesoscale collision time and the catalytic reaction constant. Additionally, it is shown that, although the distribution of obstacles is random, there are regions in the system where the catalytic chemical reactions are favored. This entails that in average the radius of gyrations of catalytic chemical reaction does not match with the radius of gyration of obstacles, that is, clusters of reactions emerge on the catalytic obstacles, even when the diffusion is significant.
Keywords: Selkov reaction; Reactive multiparticle collision; Damping in chemical reaction; Crowded environment; Clustering effects (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118314122
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:517:y:2019:i:c:p:297-306
DOI: 10.1016/j.physa.2018.11.004
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().