The leading correction to the Thomas–Fermi model at finite temperature
Eyal Segev and
Doron Gazit
Physica A: Statistical Mechanics and its Applications, 2019, vol. 518, issue C, 158-168
Abstract:
The semi-classical approach leading to the Thomas–Fermi (TF) model provides a simple universal thermodynamic description of the electronic cloud surrounding the nucleus in an atom. This model is known to be exact at the limit of Z→∞, i.e., infinite nuclear charge, at finite density and temperature. Motivated by the zero-temperature case, we show in the current paper that the correction to TF due to quantum treatment of the strongly bound inner-most electrons, for which the semi-classical approximation breaks, scales as Z−1∕3, with respect to the TF solution. As such, it is more dominant than the quantum corrections to the kinetic energy, as well as exchange and correlation, which are known to be suppressed by Z−2∕3. We conjecture that this is the leading correction for this model. In addition, we present a different free energy functional for the TF model, and a successive functional that includes the strongly bound electrons correction. We use this corrected functional to derive a self-consistent potential and the electron density in the atom, and to calculate the corrected energy. At this stage, our model has a built-in validity limit, breaking as the L shell ionizes.
Keywords: Thomas–Fermi model; Finite temperature; Plasma (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118314183
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:518:y:2019:i:c:p:158-168
DOI: 10.1016/j.physa.2018.11.010
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().