EconPapers    
Economics at your fingertips  
 

Context-aware recommender systems using hierarchical hidden Markov model

Mehdi Hosseinzadeh Aghdam

Physica A: Statistical Mechanics and its Applications, 2019, vol. 518, issue C, 89-98

Abstract: Recommender systems often generate recommendations based on user’s prior preferences. Users’ preferences may change over time due to user mode change or context change, identification of such a change is important for generating personalized recommendations. Many earlier methods have been developed under the assumption that each user has a fixed pattern. Regardless of these changes, the recommendation may not match the user’s personal preference and this recommendation will not be useful to the user based on the current context of the user. Context-aware recommender systems deal with this problem by utilizing contextual information that affects user preferences and states. Using contextual information is challenging because it is not always possible to obtain all the contextual information. Also, adding various types of contexts to recommender systems increases its dimensionality and sparsity. This paper presents a novel hierarchical hidden Markov model to identify changes in user’s preferences over time by modeling the latent context of users. Using the user-selected items, the proposed method models the user as a hidden Markov process and considers the current context of the user as a hidden variable. The latent contexts are automatically learned for each user utilizing hidden Markov model on the data collected from the user’s feedback sequences. The results of the experiments, on the benchmark data sets, show that the proposed model has a better performance compared to other methods.

Keywords: Context-aware recommender system; Hidden Markov model; Latent context; Recommender systems (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118314705
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:518:y:2019:i:c:p:89-98

DOI: 10.1016/j.physa.2018.11.037

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:518:y:2019:i:c:p:89-98