EconPapers    
Economics at your fingertips  
 

Quantum distributions for the plane rotator

Marius Grigorescu

Physica A: Statistical Mechanics and its Applications, 2019, vol. 519, issue C, 313-318

Abstract: Quantum phase-space distributions (Wigner functions) for the plane rotator are defined using wave functions expressed in both angle and angular momentum representations, with emphasis on the quantum superposition between the Fourier dual variable and the canonically conjugate coordinate. The standard quantization condition for angular momentum appears as necessary for consistency. It is shown that at finite temperature the time dependence of the quantum wave functions may provide classical sound waves. Non-thermal quantum entropy is associated with localization along the orbit.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118315334
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:519:y:2019:i:c:p:313-318

DOI: 10.1016/j.physa.2018.12.021

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:519:y:2019:i:c:p:313-318