Quantum distributions for the plane rotator
Marius Grigorescu
Physica A: Statistical Mechanics and its Applications, 2019, vol. 519, issue C, 313-318
Abstract:
Quantum phase-space distributions (Wigner functions) for the plane rotator are defined using wave functions expressed in both angle and angular momentum representations, with emphasis on the quantum superposition between the Fourier dual variable and the canonically conjugate coordinate. The standard quantization condition for angular momentum appears as necessary for consistency. It is shown that at finite temperature the time dependence of the quantum wave functions may provide classical sound waves. Non-thermal quantum entropy is associated with localization along the orbit.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118315334
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:519:y:2019:i:c:p:313-318
DOI: 10.1016/j.physa.2018.12.021
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().