Efficient network disruption under imperfect information: The sharpening effect of network reconstruction with no prior knowledge
Baoan Ren,
Yu Zhang,
Jing Chen and
Lincheng Shen
Physica A: Statistical Mechanics and its Applications, 2019, vol. 520, issue C, 196-207
Abstract:
The problem of network disruption has attracted widespread interests, for it currently appears in a myriad of contexts. However, existing methods require assuming that complete information of networks is known and spurious noise is not included, which is not always available in realistic situations. To overcome these limitations, this paper focuses on the problem of network disintegration with imperfect link information. We present a novel network disruption framework utilizing network reconstruction that is independent of prior knowledge and contains spurious links. Experiments in both synthetic and real networks reveal that, our approach which uses network reconstruction in advance, can obviously improve the network disruption performance. Moreover, we are surprised to find that, the disruption effect of our method is even superior to that achieved by complete information when the noise is relatively small. We name this phenomenon as the “sharpening effect” of network reconstruction, for its feature on reshaping network is similar to the image sharpening. Our results can be very useful for network disruption under incomplete information.
Keywords: Complex networks; Network disruption; Network reconstruction (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437118315140
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:520:y:2019:i:c:p:196-207
DOI: 10.1016/j.physa.2018.12.009
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().