A new recommender algorithm on signed networks
Peng Zhang,
Xiaoyu Song,
Leyang Xue and
Ke Gu
Physica A: Statistical Mechanics and its Applications, 2019, vol. 520, issue C, 317-321
Abstract:
Many real-world systems display opposite relationships and can be depicted as signed networks to study. On signed networks, positive/negative edges mean users like/dislike objects. This information is valuable and should be considered into recommendations. In this paper, we mainly study recommendations on signed networks that contain users’ purchase behaviors as well as attitude information, which not only can validate the accuracy of recommendation algorithms but also measure the users’ satisfaction degree after purchasing. Accordingly, we proposed a new recommender algorithm by defining an index P. We further compared our method to other four classical algorithms on three disparate datasets. The results show the accuracy of our method improves at most three times higher than other classic algorithms on recommending negative edges. In addition, the recommendation diversity of our method performs better than heat conduction algorithm which is generally recognized as an effective algorithm in terms of diversity. For instance, the value of Novelty dropped from 19.74 to 3.04 when comparing the heat conduction algorithm with our method on the Movielens dataset. In a word, our method can recommend the objects that are novel to users and ensure users’ satisfaction after purchasing.
Keywords: Signed networks; Recommendations; Online rating systems; Motifs (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119300561
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:520:y:2019:i:c:p:317-321
DOI: 10.1016/j.physa.2019.01.054
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().