EconPapers    
Economics at your fingertips  
 

Dynamic identification of urban traffic congestion warning communities in heterogeneous networks

Yajuan Guo, Licai Yang, Shenxue Hao and Jun Gao

Physica A: Statistical Mechanics and its Applications, 2019, vol. 522, issue C, 98-111

Abstract: Network-wide traffic control strategies (e.g. perimeter control and route guidance) in urban networks have recently been mainly studied to relieve or postpone congestion based on the theory of macroscopic fundamental diagram (MFD). Nevertheless, these studies are mostly applied to the statically partitioned networks or the dynamic networks that fail to fully consider traffic state prediction, conflicting with strongly spatiotemporal variability of traffic congestion or objective of active traffic management (ATM). This paper proposes a methodology to dynamically identify critical congestion warning areas from heterogeneous urban road networks, which aids to design efficient perimeter control approaches. In the methodology, a dynamic directed weighted network is built on the base of the link connectivity and the real-time traffic loads, and a link travel time prediction method based on Kalman filter is developed to calibrate directed weight values and undirected input values for links. With the undirected link input information, a dynamic congestion warning community detection method which consists of three consecutive steps is developed. Firstly, it could capture emergence of new congestion areas based on the definition of congestion seed intersection. Secondly, expansion and regression of each congested area could be achieved with the objectives of spatial compactness and traffic condition homogeneity. Thirdly, a two-level merging algorithm of adjacent different congestion areas is designed utilizing modularity model in community detection of complex networks. The proposed methodology is validated using ground truth data from downtown network of Jinan City in China. The results show that the proposed algorithms can efficiently track congestion evolutionary processes and effectively detect congestion warning areas from the test real network.

Keywords: Dynamic congestion identification; Urban traffic congestion warning; Community detection; Macroscopic fundamental diagram; Heterogeneous networks (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119301463
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:522:y:2019:i:c:p:98-111

DOI: 10.1016/j.physa.2019.01.139

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:522:y:2019:i:c:p:98-111