Multiscale Tsallis permutation entropy analysis for complex physiological time series
Chao Li and
Pengjian Shang
Physica A: Statistical Mechanics and its Applications, 2019, vol. 523, issue C, 10-20
Abstract:
Discussing the complexity of time series has been a long-standing problem, including the use of information entropy to determine the complexity of the sequence. Permutation entropy (PE) has been regarded as a learning process to investigate the complexity of time series, such as financial time series and physiological time series. The permutation entropy, which is based on the Shannon entropy (SE), has undeniable shortcomings in dealing with some specific problems. Hence in this paper, we propose the multiscale Tsallis permutation entropy (MTPE) as an improved measuring tool for assessing the hidden temporal correlations in time series. The modified method not only presents a different way showing clear characteristics but also provides more significant results compared with the SE. Robustness of the hypothesis is proved by the correlation between Tsallis permutation entropy (TPE) and HURST exponent obtained from the sequences which are generated from fractional brownian motion stochastic model. Experimental results of autoregressive sequences (AR) and electroencephalograph time series (EEG) make the advantages of Tsallis permutation entropy more obvious, which also well validate the efficiency and integrity of principle of maximum entropy (PME). Multiscale analysis provides us with another perspective to analyze permutation entropy, which also allows us to better analyze the complexity of the sequence.
Keywords: Tsallis permutation entropy; Maximum entropy; Hurst exponent; Multiscale Tsallis permutation entropy (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119300317
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:523:y:2019:i:c:p:10-20
DOI: 10.1016/j.physa.2019.01.031
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().