Modeling growth curve of fractal dimension of urban form of Beijing
Yanguang Chen and
Linshan Huang
Physica A: Statistical Mechanics and its Applications, 2019, vol. 523, issue C, 1038-1056
Abstract:
The growth curves of fractal dimension of urban form take on squashing effect and can be described by sigmoid functions. The fractal dimension growth of urban form in western countries can be modeled by Boltzmann’s equation and logistic function. However, these models cannot be well applied to the fractal dimension growth curve of Beijing city, the national capital of China. In this paper, the experimental method is employed to find parametric models for the growth curves of fractal dimension of Chinese urban form. By statistical analysis, numerical analysis, and comparative analysis, we find that the quadratic Boltzmann equation and quadratic logistic function can be used to characterize how the fractal dimension of the urban land-use pattern of Beijing increases in the course of time. The models are also suitable for many cities in the north of China. In order to convert the empirical models into theoretical models, we attempt to construct a model of spatial replacement dynamics of urban evolution, from which the logistic model of urban fractal dimension growth can be derived. The models can be utilized to predict the rate and upper limitation of Chinese urban growth. In particular, the models can be employed to reveal the similarities and differences between the fractal growth of Chinese cities and that of the cities in western countries.
Keywords: Multifractals; Quadratic Boltzmann’s equation; Quadratic logistic function; Spatial replacement dynamics; Urban form; Urban growth (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119305199
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:523:y:2019:i:c:p:1038-1056
DOI: 10.1016/j.physa.2019.04.165
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().