Global stability and positive recurrence of a stochastic SIS model with Lévy noise perturbation
Tomás Caraballo,
Adel Settati,
Mohamed El Fatini,
Aadil Lahrouz and
Abdelouahid Imlahi
Physica A: Statistical Mechanics and its Applications, 2019, vol. 523, issue C, 677-690
Abstract:
Focusing on epidemic model in random environments, this paper uses white noise and Lévy noise to model the dynamics of the SIS epidemic model subject to the random changes of the external environment. We show that the jump encourages the extinction of the disease in the population. We first, give a rigorous proof of the global stability of the disease-free equilibrium state. We also establish sufficient conditions for the persistence of the disease. The presented results are demonstrated by numerical simulations.
Keywords: White noise; Lévy jumps; Extinction; Persistence; Positive recurrence (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119302250
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:523:y:2019:i:c:p:677-690
DOI: 10.1016/j.physa.2019.03.006
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().