Economics at your fingertips  

Development of an agent-based speculation game for higher reproducibility of financial stylized facts

Kei Katahira, Yu Chen, Gaku Hashimoto and Hiroshi Okuda

Physica A: Statistical Mechanics and its Applications, 2019, vol. 524, issue C, 503-518

Abstract: Simultaneous reproduction of all financial stylized facts is so difficult that most existing stochastic process-based and agent-based models are unable to achieve the goal. In this study, by extending the decision-making structure of Minority Game, we propose a novel agent-based model called “Speculation Game,” for better reproducibility of the stylized facts. The new model has three distinct characteristics comparing with preceding agent-based adaptive models for the financial market: the enabling of nonuniform holding and idling periods, the inclusion of magnitude information of price change in history, and the implementation of a cognitive world for the evaluation of investment strategies with capital gains and losses. With these features, Speculation Game succeeds in reproducing 10 out of the currently well studied 11 stylized facts under a single parameter setting.

Keywords: Econophysics; Multi-agent simulation; Financial stylized facts; Cognitive model; Round-trip trading (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2019-11-24
Handle: RePEc:eee:phsmap:v:524:y:2019:i:c:p:503-518