Robust Weighted Least Squares Support Vector Regression algorithm to estimate the nanofluid thermal properties of water/graphene Oxide–Silicon carbide mixture
Amin Shahsavar,
Seyed Amin Bagherzadeh,
Boshra Mahmoudi,
Ahmad Hajizadeh,
Masoud Afrand and
Truong Khang Nguyen
Physica A: Statistical Mechanics and its Applications, 2019, vol. 525, issue C, 1418-1428
Abstract:
A new optimization/statistical approach of “Robust Weighted Least Squares Support Vector Regression” algorithm (RWLS-SVR) is provided for the first time. The experimental achieved amounts of the thermal conductivity for a new hybrid nanofluid of water/Graphene Oxide–Silicon Carbide, are examined at different values of temperature and nanoparticles volume fraction. A Support Vector Regression is a supervised learning regression algorithm based on the Support Vector Machine methodology. However in the Least Squares Support Vector Machine method, the inequality constraints are converted to equality constraints and the sum squared error function is employed. Moreover a LS-SVR is applied to the problem in order to calculate the error variables. Afterwards, the weights computed based on the error variables are applied to the optimization problem in order to reduce the effects of outliers on the final results. As a result, the WLS-SVR method does not significantly increase the computational burden, but it provides sparseness and robustness.
Keywords: Robust Weighted Least Squares Support Vector Regression; Nanofluid; Experimental results (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119303218
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:525:y:2019:i:c:p:1418-1428
DOI: 10.1016/j.physa.2019.03.086
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().