EconPapers    
Economics at your fingertips  
 

A neo-logistic model for the growth of bacteria

Tohru Tashiro and Fujiko Yoshimura

Physica A: Statistical Mechanics and its Applications, 2019, vol. 525, issue C, 199-215

Abstract: We propose a neo-logistic model that can describe bacterial growth data precisely. This model is not derived by modifying the logistic model formally, but by incorporating the synthesis of inducible enzymes into the logistic model indirectly. Therefore, the meaning of the parameters of the neo-logistic model becomes physically clear. The neo-logistic model can approximate bacterial growth much more accurately than previous models, and can accurately predict the order of the saturated number of bacteria in the stationary phase from the initial growth data.

Keywords: Bacterial growth; Logistic equation; Inducible enzymes (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119302821
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:525:y:2019:i:c:p:199-215

DOI: 10.1016/j.physa.2019.03.049

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:525:y:2019:i:c:p:199-215