Analysis of daily streamflow complexity by Kolmogorov measures and Lyapunov exponent
Dragutin T. Mihailović,
Emilija Nikolić-Đorić,
Ilija Arsenić,
Slavica Malinović-Milićević,
Vijay P. Singh,
Tatijana Stošić and
Borko Stošić
Physica A: Statistical Mechanics and its Applications, 2019, vol. 525, issue C, 290-303
Abstract:
Analysis of daily streamflow variability in space and time is important for water resources planning, development, and management. The natural variability of streamflow is being complicated by anthropogenic influences and climate change, which may introduce additional complexity into streamflow records. To address the complexity in streamflow, daily discharge data recorded during the period 1989–2016 at twelve gauging stations on Brazos River in Texas (USA) were used to derive a set of novel quantitative tools: Kolmogorov complexity (KC) and its derivative-associated measures to assess complexity, and Lyapunov time (LT) to assess predictability. It was found that all daily discharge series exhibited long memory with an increasing down-flow tendency, while the randomness of the series at individual sites could not be definitively concluded. All Kolmogorov complexity measures had relatively small values with the exception of the USGS (United States Geological Survey) 08088610 station at Graford, Texas, which exhibited the highest values of the complexity measures. This finding may be attributed to the elevated effect of human activities at Graford, and proportionally lesser effect at other stations. In addition, complexity tended to decrease downflow, meaning that larger catchments were generally less influenced by anthropogenic activities. The correction on randomness of Lyapunov time (quantifying predictability) was found to be inversely proportional to the Kolmogorov complexity, which strengthened our conclusion regarding the effect of anthropogenic activities, considering that KC and LT were distinct measures, based on rather different techniques.
Keywords: Streamflow time series; Kolmogorov complexity based measures; Lyapunov exponent; Lyapunov time; Kolmogorov time; Predictability of streamflow time series (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119302742
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:525:y:2019:i:c:p:290-303
DOI: 10.1016/j.physa.2019.03.041
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().